Сверхчувствительные нанотермометры устроят революцию в холодильной технике
Весьма амбициозный проект реализует Национальный институт стандартов и технологий США (NIST) — ученые института сейчас находятся на ранних стадиях разработки. Проект под названием Thermal MagIC буквально может произвести революцию в холодильной технике и заметно повлияет на другие сферы: медицину, биологию, автопромышленность, промышленное производство и т.д. — словом, на все отрасли, где измерение температуры очень важно.
Задача проекта — разработка нанометровых сверхчувствительных термометров, которые будут измерять температуру в непрозрачном трехмерном объекте в микромасштабе.
Сейчас идет первая фаза исследований. Ученые работают с нанообъектами, которые меняют свои магнитные сигналы вместе с температурой. Эти объекты внедряют в различные твердые тела и жидкости, например, в жидкий хладагент, который является компонентом современных холодильников, и в расплавленный пластик, используемый в имплантах. Объекты не имеют проводов — сигналы от них поступают на систему дистанционного зондирования в виде магнитных полей. В результате температура измеряется в 10 раз точнее, чем могут обеспечить все существующие сейчас методы.
Система работает с измерением температуры в диапазоне от 200 до 400 К, что соответствует диапазону от –73 до 127 °С. Диапазон достаточно широкий, чтобы технология нашла применение во многих сферах. Сейчас исследователи видят потенциал для расширения предела до 600 К (327 °С), и тогда новая система может применяться даже в расплавленном свинце.
Первый шаг в разработке новой системы термометрии — создание наноразмерных магнитов, которые будут излучать сильное магнитное поле в ответ на изменения температуры. Чтобы сохранить концентрацию частиц на максимально низком уровне, эти магниты должны быть в 10 чувствительнее к изменениям температуры, чем любые известные в настоящее время. Чтобы добиться этого, исследователям потребуется использовать несколько магнитных материалов в каждом нанообъекте. Для ускорения процесса подбора они прибегли к помощи пакета трехмерного микромагнитного моделирования OOMMF.
Измерение сигналов от нанотермометров внутри объекта в ответ на изменения температуры происходит с помощью так называемого способа формирования изображений с использованием магнитных частиц (MPI) — специальный прибор измеряет магнитный сигнал, исходящий от наночастиц.
В статье, недавно опубликованной в International Journal on Magnetic Particle Imaging, участники проекта уже доложили, что найден и протестирован многообещающий материал из наночастиц железа и кобальта с температурной чувствительностью, которая контролируется и меняется в зависимости от воздействия на материал.
Но чего в результате хотят добиться ученые? Дело в том, что большинство используемых в современном мире термометров измеряют температуру на относительно больших площадях — т. е. на макроскопическом, а не на микроскопическом уровне. Это относится и к обычным оконным термометрам, и высокоточным приборам в научных лабораториях. Также датчики должны каким-либо образом контактировать с системой, температура которой измеряется, и подключаются к системе считывания с помощью проводов.
Да, существуют и инфракрасные бесконтактные термометры. Но и они выполняют только макроскопические измерения и не могут «видеть» под поверхностью — нельзя выполнить точные измерения внутри объектов. Проект Thermal MagIC позволит обойти эти ограничения.
Так, инженеры смогут изучить, как происходит передача тепла в различных охлаждающих жидкостях в микроскопическом масштабе, что поможет им в поисках более дешевых и менее энергоемких систем охлаждения. Врачи смогут применять Thermal MagIC для более глубокого изучения заболеваний, основной симптом которых — повышение температуры тела как признак воспаления.
В биомедицине у системы большой потенциал при создании медицинских имплантов и протезов — лучше можно будет управлять 3D-принтерами, в которых плавится пластик. Без возможности измерения температуры в микромасштабе разработчики 3D-устройств упускают важную информацию о том, что происходит внутри пластика, когда он превращается в конкретный объект, поэтому иногда хромает прочность и качество результата.