Выбирай : Покупай : Используй

Вход для партнеров

Вход для продавцов

0

Современные 3D-сканеры: распахнутая дверь в виртуальное пространство

Хотя виртуальная реальность прекрасна даже сама по себе, большинство людей хотят, чтобы и по ту сторону компьютерного экрана их встречали цифровые образы привычных вещей. И пусть отдельные черты их будут изменены, а вид и функциональность – необычны, но и нарисованный программным кодом автомобиль должен опознаваться как автомобиль, а яблоко – как яблоко.
Автор Андрей Кузнецов

Способов превращения реальности в виртуальность и атомов – в биты существует множество. Однако основными приёмами уже долгое время остаются два: ручное моделирование объекта в специальных программах-редакторах и сканирование объекта 3D-сканером (с последующей обработкой во всё том же редакторе).

В разные периоды времени преимуществом пользовался то один, то к другой способ. На выбор влияли многие факторы, среди которых – появление новых технологий оцифровки, написание новых алгоритмов визуализации, запуск на рынок новых программных продуктов с более простыми и эффективными методами обработки 3D-модели…

Массовое использование 3D-сканеров началось с промышленного производства


Про настоящее время можно сказать, что между моделированием и сканированием установился некий паритет, который, однако, постепенно исчезает из-за постоянного прогресса технологий 3D-сканирования. Ещё одной причиной постепенной «победы» технологии 3D-сканирования можно считать стремительное развитие рынка 3D-принтеров и внедрение 3D-изображений в телевидение, кино, компьютерных играх и интерактивных аттракционах.

Есть контакт?

В настоящее время существует две различные по принципу методики сканирования трёхмерных объектов: контактный и бесконтактный.

Контактные 3D-сканеры представляют собой устройства со специальным щупом, который, проходя по контурам объекта, составляет его трёхмерную копию на экране компьютера. Контактные сканеры точны, просты в использовании и прекрасно подходят для объектов с несложной геометрией – например промышленных деталей.

Однако их использование затруднено там, где объекты имеют богатую детализацию, а форма контуров вместо чётко очерченных граней включает плавные линии. В этом случае сканирование может занимать неоправданно много времени. Кроме того, контактные сканеры неприменимы там, где принципиально невозможен сам контакт сканирующего узла с объектом. В качестве примера тут можно назвать необходимость сканирования живых объектов и внутренних органов для медицинских нужд или сканирование предметов со сверхмалыми размерами. Тем не менее, в настоящее время контактные сканеры успешно применяются в промышленности, нередко являясь дополнительной опцией различных фрезерных и гравировальных станков.

Свет и лазер

Более универсальный метод 3D-сканирования – бесконтактный. По принципу работы бесконтактные 3D-сканеры весьма похожи на свои «обычные» аналоги. Тут тоже используется эффект отражения волн – в первую очередь световых – от поверхности объекта. Отражённые волны улавливаются специальными сенсорами, анализируются и с помощью различных алгоритмов преобразуются в виртуальное отображение. Однако если обычный сканер имеет дело с плоским объектов (рисунком, текстом) и способ его работы весьма прост, то 3D-сканеры вынуждены использовать сложные механизмы для анализа облика трёхмерной фигуры.

До сих пор во многих станках некоторые узлы имеют функцию контактного сканера


По типу сканирования бесконтактные 3D-сканеры делятся на пассивные и активные. Пассивные 3D-сканеры для своей работы используют уже имеющийся окружающий свет, отражение которого от фигуры и анализируется. Фактически, пассивные бесконтактные 3D-сканеры представляют собой фото- или видеокамеру, оснащённую алгоритмами сведения снятого материала в единую объёмную фигуру. Работа этих алгоритмов может требовать как съёмки некоторого числа кадров с определённых ракурсов, так и круговой видеосъёмки с определённой скоростью движения камеры.

Основное достоинство пассивных бесконтактных 3D-сканеров – простота их технической реализации, которая компенсируется за счёт сложности алгоритмов обработки и непростой (нередко многоступенчатой) процедуры приготовления объекта к сканированию. Кроме того, пассивные бесконтактные 3D-сканеры выделяются в среднем невысоким качеством итогового результата – а значит, перед пользователем встаёт проблема последующей ручной доработки модели в редакторе.

Активные 3D-сканеры, помимо имеющегося окружающего света, генерируют собственный волновой сигнал, который может быть как световым или лазерным, так и, к примеру, звуковым. Кроме того, собственный волновой сигнал активных 3D-сканеров может иметь заданную производителем конфигурацию и форму – которая помогает сканировать объект с повышенной точностью. К примеру, некоторые 3D-сканеры проецируют на поверхность сканируемого объекта сетку (или другую регулярную структуру) из линий белого света. Искажения проекции от наложения на неровности объекта становятся дополнительным источником информации для алгоритмов 3D-сканера.

На производстве, в магазине, в госпитале…

Несмотря на видимую сложность технологий 3D-сканирования, 3D-сканеры с каждым годом получают всё большее развитие. Это связано с массой причин, среди которых можно назвать главные.

Во-первых, современному промышленному производству нужны всё более быстрые, эффективные и дешёвые технологии разработки товаров. 3D-сканирование как одно из звеньев цепочки разработки и производства с каждым годом становится всё более востребованным.

Во-вторых, торговля, всё больше и больше использующая возможности интернета и стевых маркетинговых технологий, нуждается в постоянном создании 3D-моделей товаров – для рекламных, презентационных нужд и нужд электронных версий каталогов.

Мобильный и автономный 3D-сканер способен на многое


В-третьих, максимально реалистичными виртуальными копиями реальных объектов сейчас пользуются такие разные по своей сути сферы как мода, медицина, кино. Моделировать реальность предпочитают спецслужбы и службы спасения.

Наконец, в-четвёртых, и мы говорили об этом в начале, распространение 3D-принтеров подталкивает вперёд распространение 3D-сканеров, с помощью которых производится всё большее количество вещей: от детских игрушек до протезов, палеонтологических копий скелетов и даже домов.

Производство 3D-сканеров давно уже перестало быть серией технологических прорывов. В настоящее время 3D-сканеры производятся во многих странах мира тысячью различных компаний: от всемирно известных имён до дебютантов рынка.

Точно также перестали привлекать пристальное внимание и различные типы и виды 3D-сканеров. Спокойное отношение к конструкции – следствие того, что все современные устройства так или иначе успешно справляются со своей задачей, в большинстве своём предлагая похожую функциональность и возможности.

Тем не менее, иногда тот или иной 3D-сканер какой-нибудь компании становится героем новостной ленты. Среди этих устройств есть и серьёзные модели для промышленного производства, и концептуальные разработки, и примеры выполненных запросов рынка, и творческие вариации инженеров-одиночек. Ниже мы постарались собрать несколько примеров наиболее любопытных на сегодняшний день 3D-сканеров, каждый из которых способен так или иначе повлиять на всю индустрию в целом.

Версия для печати
Комментарии