Выбирай : Покупай : Используй
в фокусе
0

Музыкальную гармонию "поверили геометрией"

Разработан принципиально новый, «геометрический» подход к изучению музыкальных произведений. Историю развития музыки на протяжении многих веков теперь можно представить как процесс изучения различных типов симметрий и геометрических форм.

Специалисты в области теории музыки Клифтон Каллендер (Clifton Callender) из университета Флориды, Ян Куинн (Ian Quinn) из Йельского университета и Дмитрий Тиможко (Dmitri Tymoczko) из университета Принстона разработали новый метод анализа и классификации музыки. Свою работу "Generalized Voice-Leading Spaces" исследователи опубликовали в журнале Science.

Новый метод анализа музыкальных произведений получил название «геометрическая теория музыки». С его помощью основные музыкальные структуры и преобразования переводятся на язык современной геометрии.

Каждая нота в рамках новой теории представляется как логарифм частоты соответствующего звука (нота «до» первой октавы, к примеру, соответствует числу 60, октава – числу 12). Аккорд, таким образом, представляется как точка с заданными координатами в геометрическом пространстве. Аккорды сгруппированы в различные «семейства», которые соответствуют различным типам геометрических пространств.

При разработке нового метода авторы использовали 5 известных типов музыкальных преобразований, которые ранее не учитывались в теории музыки при классификации звуковых последовательностей – октавная перестановка (O), пермутация (P), транспозиция (T), инверсия (I) и изменение кардинальности (C). Все эти преобразования, как пишут авторы, формируют так называемые OPTIC-симметрии в n-мерном пространстве и хранят музыкальную информацию об аккорде – в какой октаве находятся его ноты, в какой последовательности они воспроизведены, сколько раз повторяются и проч. С помощью OPTIC-симметрий классифицируются подобные, но не идентичные аккорды и их последовательности.

Авторы статьи показывают, что различные комбинации этих 5-ти симметрий формируют множество различных музыкальных структур, одни из которых уже известны в теории музыки (последовательность аккордов, к примеру, будет выражаться в новых терминах как OPC), а другие являются принципиально новыми понятиями, которые, возможно, возьмут на вооружение композиторы будущего.

В качестве примера авторами приводится геометрическое представление различных типов аккордов из четырех звуков – тетраэдр. Сферы на графике представляют типы аккордов, цвета сфер соответствуют величине интервалов между звуками аккорда: синий – малые интервалы, более теплые тона – более «разреженные» звуки аккорда. Красная сфера – наиболее гармоничный аккорд с равными интервалами между нотами, который был популярен у композиторов XIX века.

«Геометрический» метод анализа музыки, по мнению авторов исследования, может привести к созданию принципиально новых музыкальных инструментов и новых способов визуализации музыки, а также внести изменения в современные методики преподавания музыки и способы изучения различных музыкальных стилей (классики, поп-музыки, рок-музыки и проч.). Новая терминология также поможет более углубленно сравнивать музыкальные произведения композиторов разных эпох и представлять результаты исследований в более удобной математической форме. Иными словами, предлагается выделить из музыкальных произведений их математическую суть.
Комментарии