На суперколлайдере готовят маленький Большой взрыв
Давно известны три состояния вещества во Вселенной – твердое, жидкое и парообразное. В прошлом веке стало известно четвертое – плазма. Это состояние возможно при очень высоких температурах, когда электроны покидают атом, оставляя вместо него голые ядра. Если же разогреть вещество еще больше, так, что не только ядра распадутся на протоны и нейтроны, но даже и те расплавятся на кварки и склеивающие их частицы – глюоны, - то получится состояние вещества под названием кварк-глюонная плазма, то самое состояние, в котором оно находилось в момент Большого Взрыва 13,7 млрд лет тому назад.
Как известно, основной и наиболее разрекламированной целью LHC является открытие бозона Хиггса – элементарной частицы, которая обеспечивает массой все остальные. Однако получение кварк-глюонной плазмы – тоже не самая последняя из целей LHC. Это считается одной из приоритетных задач ядерной физики. Сами кварки и глюоны в такой плазме увидеть невозможно, можно увидеть только те частицы, в которые они превратятся. Существует множество предсказаний по поводу этих частиц, и для физиков важно узнать, которое из них верно.
Чтобы получить кварк-глюонную плазму, столкновения протонов недостаточно, нужно что-то намного более массивное, потому и был выбран свинец с 208 протонами и нейтронами. Как предполагают, такая плазма проживет в LHC недолго – всего триллионную часть триллионной доли секунды. Это намного меньше того времени, в течение которого кварк-глюонная плазма существовала после Большого взрыва – одной стотысячной доли секунды. Для создания новой Вселенной этого времени отнюдь недостаточно, однако, как надеются ученые, его вполне хватит для понимания свойств пятого состояния вещества и того, каким именно образом оно переходило в другие, всем известные состояния, породив звезды, планеты и в конечном счете разумную жизнь на одной из них.