Сжатие при нагревании: почему такое возможно?

Большинство материалов расширяются при нагревании, но существуют несколько уникальных веществ, которые ведут...

Большинство материалов расширяются при нагревании, но существуют несколько уникальных веществ, которые ведут себя по-другому. Инженеры Калифорнийского технологического института впервые выяснили, каким образом один из этих любопытных материалов, трифторид скандия (ScF3), сжимается при нагревании.

Это открытие приведет к более глубокому пониманию поведения всех видов веществ, а также позволит создавать новые материалы с уникальными свойствами. Материалы, которые не расширяются при нагревании, - не просто научная диковинка. Они полезны в самых разных сферах, например, в высокоточных механизмах вроде часов, которые должны сохранять высокую точность хода даже при колебаниях температуры.

Когда нагревают твердые материалы, большая часть тепла уходит на колебания атомов. В обычных материалах эти колебания «раздвигают» атомы, в результате чего материал расширяется. Однако некоторые вещества имеют уникальные кристаллические структуры, которые заставляют их сокращаться при нагревании. Это свойство называется отрицательным тепловым расширением. К сожалению, эти кристаллические структуры очень сложны, и ученые до сих пор были не в состоянии увидеть, каким образом колебания атомов приводят к сокращению размеров материала.

Ситуация изменилась благодаря открытию в 2010 году отрицательного теплового расширения у ScF3, порошкообразного вещества с относительно простой кристаллической структурой. Чтобы выяснить, как его атомы вибрируют под воздействием высокой температуры, американские ученые использовали компьютер для моделирования поведения каждого атома. Также свойства материала изучались в нейтронной лаборатории комплекса ORNL в штате Теннеси.

Результаты исследования впервые дали четкую картину того, как сжимается материал. Для того чтобы понять этот процесс, нужно представить атомы скандия и фтора шарами, соединенными друг с другом пружинами. Более легкий атом фтора связан с двумя более тяжелыми атомами скандия. При повышении температуры все атомы начинают раскачиваться в нескольких направлениях, но из-за линейного расположения атома фтора и двух атомов скандия первый больше вибрирует в направлениях, перпендикулярных пружинам. С каждым колебанием фтор притягивает атомы скандия друг к другу. Поскольку это происходит по всему материалу, он сокращается в размерах.

Наибольшее удивление вызвал тот факт, что при сильных колебаниях энергия атома фтора пропорциональна четвертой степени перемещения (колебание четвертой степени или биквадратное колебание). При этом для большинства материалов характерны гармонические (квадратичные) колебания, такие как возвратно-поступательное движение пружин и маятников.

По заявлению авторов открытия, практически чистый квантовый оссцилятор четвертой степени никогда до этого не был зафиксирован в кристаллах. Это означает, что изучение ScF3 в перспективе позволит создать материалы с уникальными тепловыми свойствами.

Читайте на CNews
Гамма-нож и линейный ускоритель: что способно победить рак?
"Фобос-Грунт" застрял на околоземной орбите
В Солнечной системе прячутся инопланетные зонды