Нейтринная связь: как это работает и что обещает

В рамках эксперимента физикам удалось передать информацию с помощью частиц нейтрино. Очевидно, что пока "нейтринному телеграфу" далеко до практического применения. Тем не менее, перспективы огромны.

Инжектор-передатчик NuMI отправлял пучок нейтронов с интервалами 2,2 секунды между каждым и суперциклом в 61,267 секунды. Приемник, детектор MINERvA, на протяжении 142 минут эксперимента сделал 3454 записей.

Надо подчеркнуть, что особенности нейтрино и инжектора-передатчика заставили ученых выбрать самый простой и не очень быстрый метод дешифровки сигнала и исправления ошибок приема. Фактически, это объединение нескольких передач, когда кадры (в нашем случае слово «нейтрино) синхронизируются для сравнения структуры битов и замены поврежденной информации.


На рисунке 3 видна статистика синхронизации кадров. Кружками отмечены правильно реконструированные сообщения. Некоторые кадры получить не удалось из-за прекращения работы инжектора или детектора. Таким образом, передача сообщения была подтверждена на основании расшифровки и синхронизации 2 из 15 полученных кадров.


Теоретические расчеты процесса Пуассона показывают, что при 5 кадрах 99% передаваемых бит декодируются правильно. А полное отсутствие ошибок наблюдается при синхронизации 9 кадров. В реальном эксперименте каждый кадр передавался с точностью 78%. Это хорошо видно на рисунке 2в, где изображен один кадр (сообщение со словом «нейтрино»): в верхней части зелеными и белыми полосками показаны переданные биты информации, внизу – принятые.

Синхронизация нескольких таких кадров позволяет реконструировать кадр и заполнить прорехи, появившиеся в результате различных помех. В принципе детектор MINERvA может регистрировать в среднем 0,81 нейтринное событие на каждый импульс из 2,25×1013 нейтрино. Выглядит ничтожно мало, но, тем не менее, при выбранном кодировании сообщения (сигнал получен это «1», не получен – «0») за два кадра можно добиться точности передачи битов в 99%. В любом случае, в обсуждаемом эксперименте не стояла задача добиться максимальной скорости передачи, а лишь опытным путем доказать возможность нейтринной связи. Но потенциал более скоростного соединения есть даже при примитивных методиках кодирования.


Схема эксперимента по нейтринной связи

Для данного эксперимента максимальная теоретическая скорость передачи данных 0,37 бит/импульс инжектора. То есть, например, для получения точности 99% при передаче 40 бит информации нам нужно сделать две серии по 92 импульса – итого 184. На практике скорость передачи в два раза ниже: около 0,22 бит/импульс.

Как было написано выше, инжектор NuMi может выдавать импульс каждые 2,2 секунды, а значит, для текущего эксперимента скорость передачи данных была равна около 0,11 бит в секунду. По сравнению с современными беспроводными сетями, способными передать мегабайты данных за секунду, нейтринная связь работает очень медленно. Но не забываем, что ни один радиопередатчик не способен послать сигнал сквозь 240 м скальной породы, а для нейтринного – потенциально и Юпитер с Солнцем вместе взятые не являются препятствием.

Применение

Возможность коммуникаций с помощью нейтрино начала активно обсуждаться учеными с конца 1960-х годов. Прежде всего, нейтринная связь интересовала военных – им нужен надежный способ связи с подлодками, которые находятся на большой глубине. Сегодня для этих целей используются радиостанции, работающие в диапазоне очень низких частот (3—30 кГц). Радиоволны этого диапазона проходят сквозь воду на глубину до 20 м, и таким образом подлодка может получить от командования приказы, находясь под водой. Однако строительство низкочастотного радиопередатчика – это очень сложное дело, поскольку требуется построить антенну для радиоволны длиной около 3,6-3,9 км. Длина такой антенны должна быть около 2 км, а вес составляет сотни тонн. Например, антенный комплекс российской станции связи с подлодками «Антей» (расположена вблизи г. Вилейка, Беларусь) весит 900 т. На этом фоне нейтринный приемопередатчик, возможно, вызывающий ироничную усмешку у скептиков, выглядит компактным прибором, весящим «всего» десятки тонн. В общем, сейчас инженеры используют различные ухищрения, вроде электродов, зарытых в землю и использующих ее в качестве антенны. Но в любом случае низкочастотные передатчики слишком уязвимы для ударов противника, обеспечивают скорость передачи данных до 100 кб/сек и потребляют очень много электроэнергии с низким КПД. Буксируемые антенны, установленные на подлодке, тоже имеют большую длину, к тому же они работают только на прием и для двусторонней связи все равно нужно использовать спутник-ретранслятор. Нейтринная связь может решить эту проблему, ведь нейтрино легко проходят сквозь толщу воды и корпус подлодки. Возможность связи с командованием без необходимости всплытия существенно повысит надежность морской компоненты ядерного щита.

Нейтринные приемопередатчики решат, наконец, проблему связи с космическими аппаратами: с ними можно будет связаться, даже если они закрыты от Земли другой планетой.

Также нейтринная связь может повлиять и на гражданские коммуникации: нейтринный сигнал проходит сквозь толщу Земли приблизительно на 20 миллисекунд быстрее, чем радиосигнал, направленный через спутники-ретрансляторы.

Но, пожалуй, главное, что открывает нам прорыв в нейтринной связи – это возможность слушать Вселенную в совершенно новом диапазоне. Некоторые ученые, в том числе и из Fermilab, считают, что связь между высокоразвитыми цивилизации ведется именно с помощью нейтрино. Дело в том, что ни одно электромагнитное сообщение не способно пересечь всю галактику: оно неизбежно будет уничтожено мощными помехами, «заглохнет» в облаках пыли, отразится от планет, «утонет» в глубине звезды и т.д. В то же время нейтрино способны проделать этот путь и доставить послание. Пока для участия в гипотетических галактических нейтринных коммуникационных сетях у человечества недостаточно высокий уровень технологий. Прежде всего, нам надо научиться генерировать и модулировать сверхмощные нейтронные пучки, а также создать детекторы, способные улавливать 60 и более процентов нейтрино, а не одну штуку из триллионов. Возможно, с развитием нанотехнологий нам это удастся.

Михаил Левкевич