Что станет российским мегапроектом: реактор ПИК, сверхмощный лазер или суперколлайдер?

24 июня правительственная комиссия отобрала шесть основных претендентов на проект уровня megascience в России. Проекты такого уровня в перспективе должны развиться в крупные центры международного сотрудничества, поэтому требования к кандидатам предъявляются суровые. Какие же проекты прошли отбор?

Конструкция ПИКа аналогична современным зарубежным исследовательским реакторам; активная зона объемом около 50 л помещена в тяжеловодный отражатель и представляет собой компактный интенсивный источник нейтронов деления. Установка сможет выдавать нейтронный пучок с характеристиками, превышающими мировые аналоги, – 1015 нейтронов в секунду на квадратный сантиметр. На реакторе возможно одновременное проведение более 50 различных экспериментов. Уже заключен контракт с Германией о перемещении на ПИК шести высокоточных исследовательских установок стоимостью свыше 20 млн евро.

MARS в Курчатовском институте

MARS - источник специализированного синхротронного излучения четвертого поколения, который планируется создать в Курчатовском институте в Москве. В настоящее время на территории института работает синхротронный источник поколения 2+, а в мире существуют три установки 3-го поколения (США, Япония, Европа), а также лазеры на свободных электронах, спектр применения которых в науке схож по своим возможностям с синхротронными источниками.


Ускорительно-накопительный комплекс Курчатовского источника синхротронного излучения

Современные синхротронные источники обладают высокой степенью поляризации, непрерывностью спектра и большой интенсивностью, что позволяет использовать синхротронное излучение в спектроскопии, рентгеновском структурном анализе биологических объектов, для изучения оптической активности молекул, а также для фотолитографии и в производстве интегральных схем. В целом область применения фотонных источников излучения (синхротронов и лазеров) зависит от мощности установки. Источник синхротронного излучения нового поколения станет самым мощным среди существующих установок подобного уровня, но будет уступать европейскому рентгеновскому лазеру XFEL (X-RAY Free Electron Laser). Таким образом, он перекроет разрыв в области структурных исследований, образовавшийся между источниками третьего поколения и лазерами.

Коллайдер тяжелых ионов NICA

Строительство ускорительного комплекс-коллайдера тяжелых ионов NICA (Nuclotron-based Ion Collider fAcility) ведется на территории Объединенного института ядерных исследований в Дубне на базе действующего ускорителя Нуклотрон. Целью проекта будет изучение перехода ядерной материи в кварк-глюонную плазму, а также свойств смешанной фазы этих состояний.


Коллайдер тяжелых ионов предполагается строить на базе ускорителя Нуклотрон

Исследования в этой области помогут ответить на вопрос о том, какие процессы происходили в ранней Вселенной незадолго после Большого взрыва. Относительно низкие энергии столкновения ядер золота (порядка 5,5 ГэВ на нуклон) позволят дубненским экспериментаторам увидеть эффекты, незаметные для сверхмощных коллайдеров БАК (CERN) и RICH (Брукхейвен). В настоящее время ведутся работы по модернизации систем Нуклотрона, а к 2015 году планируется завершить строительство сверхпроводящих колец коллайдера. Финансирование проекта ведется за счет 23-х стран-участниц ОИЯИ.

Сверхмощный лазер

Проект создания сверхмощного пятипетаваттного лазера PEARL (PEtawatt pARametric Laser) в Институте прикладной физики РАН в Нижнем Новгороде. В ИПФ уже имеется богатый опыт в области строительства крупных лазерных установок. Одиннадцать лет назад на территории этого института был построен первый в России лазер с титан-сапфиром в качестве рабочего вещества мощностью 1ТВт, а в 2006 году при финансировании "Росатома" был создан субпетаваттный лазерный комплекс, на базе которого планируется строительство проекта PEARL.


Субпетаваттный лазерный комплекс. Установка 2006 года

Интерес атомщиков к лазерной установке объясняется возможностью создания лазерного термоядерного синтеза, как альтернативы термоядерному реактору типа токамака. При помощи сверхвысокой интенсивности лазерного излучения можно обеспечить нагрев дейтерий-тритиевой мишени. При этом период удержания плазмы, необходимый для протекания реакции синтеза, составляет 10-10 секунды, что на 10 порядков меньше, чем в токамаке. Помимо участия в термоядерной программе, модернизированная установка PEARL может войти в состав панъевропейского проекта ELI (Extreme Light Infrastructure), который включает в себя строительство нескольких крупных лазерных комплексов на территории европейских государств для решения различных задач фундаментальной физики. В частности, на российском лазере могут быть исследованы эффекты нелинейности вакуума, а также процесс рождения электрон-позитронных пар при воздействии на вакуум  высокоэнергетического лазерного излучения.

Фабрика очарованных частиц

Электрон-позитронный коллайдер и "чарм-тау фабрика" в Институте ядерной физики СО РАН в Новосибирске. Проект в области фундаментальной ядерной физики, для реализации которого задумано строительство 800 метрового коллайдера и детектора частиц под территорией института. Новосибирский коллайдер сможет объяснить причину асимметрии между количеством вещества и антивещества во Вселенной. После Большого взрыва вещество и антивещество должны были образоваться в равных количествах, но в современном мире по непонятным причинам антивещество не наблюдается. Очарованные (англ. "charm") частицы - D-мезоны, "фабрикой" для создания которых станет новый проект, могут послужить ключом к разгадке этого явления. Данные, полученные на "чарм-тау фабрике", дополнят данные Большого адронного коллайдера,  поскольку для ответа на вопрос об асимметрии материи там изучают другой тип частиц – прелестные (англ. "beauty").


Электрон-позитронный коллайдер ВЭПП-2000 ИЯФ в Новосибирске

Эпитет тау в названии проекта происходит от названия еще одной исследуемой частицы – тау-лептона, процесс распада которого физики только начинают изучать. Проектом уже заинтересовались ученые из Италии, США и Японии, причем как строительством ускорителя, так и проведением экспериментов. Любопытно, что первый коллайдер - ускоритель на встречных пучках, получивший имя ВЭП-1, был придуман и построен именно в Новосибирском ИЯФ еще в 1960-х годах.

Среди проектов-финалистов, выдвинутых на соискание мегагранта, есть как чисто академические, так и более прикладные. Но помимо решения  задач фундаментальной науки, каждый из них может послужить толчком для развития новых технологий, привлечения зарубежных ученых в российскую науку, а также создания собственной научной школы.

Анна Максимчук,
научный сотрудник ОИЯИ,
специально для R&D.CNews.ru