Выбирай : Покупай : Используй

Вход для партнеров

Вход для продавцов

0

Обзор дисплеев будущего : кубические, сферические, газообразные

Углубляясь в архивные истории, можно сказать, что вопрос о прогрессе дисплеев впервые встал несколько десятков миллионов лет назад, когда наши млекопитающие предки выбрали зрение главным среди прочих чувств. В ходе эволюции оно усложнялось и улучшалось – в итоге чего современный человек (как вид) обладает наиболее совершенным зрением по совокупности параметров. Мы различаем огромное количество цветов. Обладаем панорамным зрением с широким углом обзора. Видим мельчайшие детали на достаточно внушительных расстояниях. Благодаря бинокулярному расположению глаз мы воспринимаем реальность во всех трёх измерениях. Мы чрезвычайно внимательны и придирчивы к тому, что видим – и не важно: реален ли этот объект или он существует лишь в виртуальном пространстве дисплея…
Автор Андрей Кузнецов

Прогресс в области создания дисплеев идёт уже несколько десятков лет и нет сомнения, что его цели во многом продиктованы особенностями зрения человека.

За примерами далеко ходить не надо. Мы уже перечислили четыре основных параметра человеческого восприятия действительности: высокое цветоразличение, высокая детализация, панорамный и бинокулярный характер зрения.

Именно так большинство людей представляет себе сейчас идеальный дисплей

 

Перенеся это на особенности конструкции мониторов, мы увидим, как росла с течением времени у них цветопередача (первые дисплеи были монохромны, сейчас – могут отображать миллионы цветов), разрешение (растёт как само разрешение, так и плотность числа элементов на единицу площади дисплея), размер (людей уже не заставляют концентрировать взгляд на окошке с диагональю 12-14 дюймов). Прямо сейчас, в сегодняшние дни набирают обороты технологии, позволяющие видеть картинку трёхмерной, пользуясь полным набором преимуществ человеческого бинокулярного зрения.

Древний охотник в полной мере использовал главное из чувств - зрение

 

Помимо «пользовательского» фактора в прогрессе дисплеев, конечно, имеется и ещё один – чисто технический. Благодаря нему дисплеи становились менее массивными, более тонкими, более экономичными. В настоящее время одной из первоочередных технических задач является создание гибкого дисплея, сохраняющего все свойства, присущие современным моделям (в первую очередь – яркость, цветопередачу, разрешение). Также идёт активное развитие идей создания и коммерческого использования прозрачных дисплеев, которые пока используются в качестве дизайнерских элементов.

Цветовая дифференциация

Известно, что глаз человека способен различать несколько миллионов цветов. Количество оттенков одного цвета идёт на сотни. Первым актом творчества в истории цивилизации стала наскальная живопись. Из всех групп слов, описывающих ощущения, наиболее богатой во всех языках считается описывающая цвета – у северных народов имеется до полусотни слов, обозначающих цвет снега.

С точки зрения анатомии, всем краскам мира мы обязаны наличию в глазе трёх видов клеток – колбочек. Одни из них чувствительны к жёлто-красному спектру, другие – к зелёно-жёлтому, третьи – к сине-фиолетовому. Именно такое строение подсказало учёным-физикам и инженерам решение о цвете трёх элементов в цветных дисплеях. Триада R-G-B (Red, Green, Blue) стала больше, чем классикой – абсолютное большинство матриц современных дисплеев и моделей, уже сошедших с конвейера, устроены именно так.

Стандартная схема цветового пространства RGB

 

Большинство, но не все. Простым, но эффективным отступлением от канона может быть введение в список цветов элементов белого, который преобразует триаду R-G-B в квартет R-G-B-W. Первым практическим воплощением данной идеи на рынке стала технология PenTile RGBW американской компании Clairvoyante. Технология была представлена в 2005 году. Впоследствии дисплеи с четырьмя элементами (RGBW) можно было увидеть у продукции компаний Motorola (телефоны ES400, Atrix 4G). Samsung, в 2008 году, купив Clairvoyante, решила развивать технологию PenTile RGBW, оснащая новые смартфоны и планшетные компьютеры дисплеями с матрицей RGBW. В 2011 году корпорация Sony пустила в промышленное производство дисплеи с матрицей RGBW собственной разработки. Технологию назвали White Magic. В настоящее время она применяется в смартфонах Xperia P и фотоаппаратах Cybershot DSC-RX100.

RGBW - белый элемент делает экран ярче

 

Несколько другим путём в создании матрицы на четырёх цветовых элементах пошла компания Sharp. Её технология Quattron предусматривает присоединение к тройке RGB жёлтого (Yellow) цвета. Матрицы RGBY используются в дисплеях новых телевизоров линейки Sharp Aquos Quattron.

Схема RGBY - жёлтый цвет - самый жёлтый в мире

 

Однако присоединением нового элемента к эталонной тройке RGB оригинальные технологические ходы по улучшению цветопередачи дисплеев не исчерпываются. Некоторые разработчики готовы идти на смену всех парадигмы и работать с иными цветовыми пространствами. В середине 2000-х годов много говорили о возможном создании компанией Apple дисплеев, использующих пространство CMYK (Cyan, Magenta, Yellow, blacK – голубой, фиолетовый, жёлтый и чёрный).

Схема конструкции CMYK-дисплеев мониторов линейки Typotronic

 

Однако американский IT-гранд на эксперимент не решился, а вот кемеровская компания «Мадлоад Креатив» решила рискнуть. В 2010 году под зарегистрированной маркой CMYK Displays вышла линейка мониторов Typotronic с дисплеями CMYK с диагональю от 17 до 22 дюймов. Технология CMYK Displays использует фильтры на e-ink четырёх цветов (CMYK). Как указывают производители, их мониторы не рассчитаны на повседневное использование. Typotronic предназначены для вывода изображений перед печатью, позволяя увидеть типографский офсетный оттиск именно с той цветопередачей, какая она будет в реальности.

Версия для печати
Комментарии
Статьи по теме